Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 245-250, 2022.
Article in Chinese | WPRIM | ID: wpr-920528

ABSTRACT

Objective@#Oxygen-glucose deprivation (OGD) is used to mimic ischemia in vitro to observe whether endoplasmic reticulum (ER) stress is involved in human dental pulp cells (hDPCs) after OGD and to better understand the regulatory mechanism of hDPCs in ischemia.@*Methods@# hDPCs were cultured in glucose-free DMEM and hypoxia (volume fraction 2% O2) to establish an hDPCs OGD model in vitro, which mimics hDPCs ischemia in vitro. hDPCs were divided into a control group (normal culture) and an experimental group (OGD 0 h, 2 h, 4 h and 8 h groups). After pretreatment with OGD for 0, 2, 4 and 8 h, hDPC viability was measured by methylthiazol tetrazolium (MTT) assay. qRT-PCR was used to detect the mRNA expression of ER stress markers [splicing x-box binding protein1 (sXBP1), activating transcription Factor 4 (ATF4) and C/EBP homologous protein (chop)]. Western blot was used to detect the protein expression of ER stress markers [phosphorylated RNA-activated protein kinase-like ER-resident kinase (p-perk) and phosphorylated eukaryotic initiation factor-2α (p-eIF2α)]. @*Results@#Compared with OGD 0 h group, cell viability of hDPCs decreased when exposed to OGD treatment for 2 h, 4 h and 8 h. Compared with the control group, mRNA expressions of ER stress makers (sXBP1, ATF4 and chop) and the protein expressions of ER stress protein markers (p-perk andp-eIF2α) increased in OGD treatment cells after 4 h were higher in OGD cells. The differences were statistically significant (P<0.05).@*Conclusion@#The results indicate that ER stress response is involved in hDPCs in OGD treatment.

2.
Braz. dent. j ; 31(3): 298-303, May-June 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132307

ABSTRACT

Abstract Diabetes is a group of metabolic disorders that can lead to damage and dysfunction of many organs including the dental pulp. Increased inflammatory response, reduction of dentin formation and impaired healing were reported in diabetic dental pulp. Hyperglycemia, which is a main characteristic of diabetes, was suggested to play a role in many diabetic complications. Therefore our aim was to investigate the effects of high glucose levels on proliferation, reactive oxygen species (ROS) production and odontogenic differentiation of human dental pulp cells (HDPCs). HDPCs were cultured under low glucose (5.5mM Glucose), high glucose (25 mM Glucose) and mannitol (iso-osmolar control) conditions. Cell proliferation was analyzed by MTT assay for 11 days. Glutathione and DCFH-DA assay were used to assess ROS and antioxidant levels after 24 h of glucose exposure. Odontogenic differentiation was evaluated and quantified by alizarin red staining on day 21. Expression of mineralization-associated genes, which were alkaline phosphatase, dentin sialophosphoprotein and osteonectin, was determined by RT-qPCR on day 14. The results showed that high glucose concentration decreased proliferation of HDPCs. Odontogenic differentiation, both by gene expression and mineral matrix deposit, was inhibited by high glucose condition. In addition, high DCF levels and low reduced glutathione levels were observed in high glucose condition. However, no differences were observed between mannitol and low glucose conditions. In conclusion, the results clearly showed the negative effect of high glucose condition on HDPCs proliferation and differentiation. Moreover, it also induced ROS production of HDPCs.


Resumo O diabetes abrange um grupo de distúrbios metabólicos que podem levar a danos e disfunções de muitos órgãos, incluindo a polpa dentária. Aumento da resposta inflamatória, redução da formação de dentina e comprometimento da cicatrização foram relatados na polpa dentária diabética. A hiperglicemia, que é uma característica determinante do diabetes, desempenha um papel importante em muitas complicações diabéticas. Portanto, nosso objetivo foi investigar os efeitos dos altos níveis de glicose na proliferação, produção de espécies reativas de oxigênio (ROS, em inglês) e diferenciação odontogênica das células da polpa dental humana (HDPCs, em inglês). As HDPCs foram cultivadas em condições de baixa glicose (glicose 5,5 mM), alta glicose (glicose 25 mM) e manitol (controle iso-osmolar). A proliferação celular foi analisada pelo ensaio MTT por 11 dias. Glutationa e DCFH-DA foram utilizados para avaliar os níveis de ROS e antioxidantes após 24 h de exposição à glicose. A diferenciação odontogênica foi avaliada e quantificada pela coloração com vermelho de alizarina no dia 21. A expressão de genes associados à mineralização, que eram fosfatase alcalina, sialofosfoproteína de dentina e osteonectina, foi determinada por RT-qPCR no dia 14. Os resultados mostraram que a alta concentração de glicose diminuiu a proliferação de HDPCs. A diferenciação odontogênica, tanto pela expressão gênica quanto pelo depósito da matriz mineral, foi inibida pela condição de alta glicose. Além disso, altos níveis de DCF e níveis reduzidos de glutationa foram observados na condição de alta glicose. No entanto, não foram observadas diferenças entre o manitol e as condições de baixa glicose. Em conclusão, os resultados mostraram claramente o efeito negativo da condição de alta glicose na proliferação e diferenciação de HDPCs. Além disso, essa condição também induziu a produção de ROS em HDPCs.


Subject(s)
Humans , Dental Pulp , Alkaline Phosphatase , Phosphoproteins , Cell Differentiation , Cells, Cultured , Extracellular Matrix Proteins , Reactive Oxygen Species , Cell Proliferation , Glucose , Odontoblasts
3.
International Journal of Oral Biology ; : 149-153, 2017.
Article in English | WPRIM | ID: wpr-222405

ABSTRACT

Cyclooxygenase-2 (COX-2)-mediated prostaglandin E₂ (PGE₂) plays a key role in development and progression of inflammatory responses and Porphyromonas gingivalis is a common endodontic pathogen. In this study, we investigated induction of COX-2 and PGE₂ by P. gingivalis in human dental pulp cells (HDPCs). P. gingivalis increased expression of COX-2, but not that of COX-1. Increased levels of PGE₂ were released from P. gingivalis-infected HDPCs and this PGE₂ increase was blocked by celecoxib, a selective COX-2 inhibitor. P. gingivalis activated all three types of mitogen-activated protein kinases (MAPKs). P. gingivalis-induced activation of nuclear factor-κB (NF-κB) was demonstrated by the results of phosphorylation of NF-κ B p65 and degradation of inhibitor of κB-α (IκB-α). Pharmacological inhibition of each of the three types of MAPKs and NF-κB substantially attenuated P. gingivalis induced PGE2 production. These results suggest that P. gingivalis should promote endodontic inflammation by stimulating dental pulp cells to produce PGE₂.


Subject(s)
Humans , Celecoxib , Cyclooxygenase 2 , Dental Pulp , Dinoprostone , Mitogen-Activated Protein Kinases , Phosphorylation , Porphyromonas gingivalis , Porphyromonas , Pulpitis
4.
International Journal of Oral Biology ; : 91-97, 2017.
Article in Korean | WPRIM | ID: wpr-205040

ABSTRACT

Although anti-aging activities of melatonin, a hormone secreted by the pineal gland, have been reported in senescence-accelerated mouse models and several types of cells, its impact and mechanism on the senescence of human dental pulp cells (HDPCs) remains unknown. In this study, we examined the impact of melatonin on cellular premature senescence of HDPCs. Here, we found that melatonin markedly inhibited senescent characteristics of HDPCs after exposure to hydrogen peroxide (H₂O₂), including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive HDPCs and the upregulation of p21 protein, an indicator for senescence. In addition, as melatonin attenuated H₂O₂-stimulated phosphorylation of c-Jun N-terminal kinase (JNK), while selective inhibition of JNK activity with SP600125 significantly attenuated H₂O₂-induced increase in SA-beta-gal activity. Results reveal that melatonin antagonizes premature senescence of HDPCs via JNK pathway. Thus, melatonin may have therapeutic potential to prevent stress-induced premature senescence, possibly correlated with development of dental pulp diseases, and to maintain oral health across the life span.


Subject(s)
Animals , Humans , Mice , Aging , Dental Pulp Diseases , Dental Pulp , Hydrogen Peroxide , JNK Mitogen-Activated Protein Kinases , MAP Kinase Signaling System , Melatonin , Oral Health , Phosphorylation , Pineal Gland , Up-Regulation
5.
International Journal of Oral Biology ; : 155-161, 2016.
Article in Korean | WPRIM | ID: wpr-124486

ABSTRACT

Dental pulp is a highly vascularized tissue with high regenerative potential. Revascularization of severed vasculature in the tooth is required for pulp healing during avulsed tooth treatment. In this study, the relative expression of angiogenesis-related proteins was determined in human dental pulp cells using a human angiogenesis proteome profiler array. The proteome profiler array detected differentially expressed angiogenesis-related factors under conditions of hypoxia, which enhances the angiogenic potential of dental pulp cells. We confirmed that hypoxia regulates the mRNA expression of angiogenesis-related factors, including CXCL16 in dental pulp cells. Furthermore, conditioned media of hypoxic pulp cells induced tube-like structures of vascular endothelial cells, which were reduced by the neutralization of CXCL16 function. In conclusion, our data show that angiogenesis-related factors are differentially expressed by hypoxia in dental pulp cells and suggest that CXCL16 may involve in the revascularization of hypoxic dental pulp.


Subject(s)
Humans , Hypoxia , Culture Media, Conditioned , Dental Pulp , Endothelial Cells , Proteome , RNA, Messenger , Tooth , Tooth Avulsion
6.
The Korean Journal of Physiology and Pharmacology ; : 25-32, 2014.
Article in English | WPRIM | ID: wpr-727599

ABSTRACT

Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.


Subject(s)
Humans , Acetylcysteine , Annexin A5 , Apoptosis , Caspase 3 , Caspase 9 , Cell Survival , Cyclic GMP , Cytochromes c , Cytosol , Dental Pulp , Guanylate Cyclase , Mitochondria , Nitric Oxide , Nitric Oxide Synthase , Nitroprusside , Reactive Oxygen Species , Tissue Donors
7.
Journal of Korean Academy of Conservative Dentistry ; : 430-441, 2009.
Article in Korean | WPRIM | ID: wpr-31981

ABSTRACT

The purpose of this study was to characterize functional distinction between human dental pulp cells(PC) and periodontal ligament cells(PDLC) using cDNA microarray assay and to confirm the results of the microarray assay using RT-PCR. 3 genes out of 51 genes which were found to be more expressed(>2 fold) in PC were selected, and 3 genes out of 19 genes which were found to be more expressed(>2 fold) in PDLC were selected for RT-PCR as well. According to this study, the results were as follows: 1. From the microarray assay, 51 genes were more expressed (2 fold) from PC than PDLC. 2. RT-PCR confirmed that ITGA4 and TGF beta2 were more expressed in PC than in PDLC 3. From the microarray assay, 19 genes were more expressed (2 fold) from PDLC than PC. 4. RT-PCR confirmed that LUM, WISP1, and MMP1 were more expressed in PDLC than in PC. From the present study, different expression of the genes between the PC and PDLC were characterized to show the genes which play an important role in dentinogenesis were more expressed from PC than PDLC, while the genes which were related with collagen synthesis were more expressed from PDLC than PC.


Subject(s)
Humans , Collagen , Dental Pulp , Dentinogenesis , Gene Expression , Oligonucleotide Array Sequence Analysis , Periodontal Ligament
8.
Journal of Third Military Medical University ; (24)2003.
Article in Chinese | WPRIM | ID: wpr-565977

ABSTRACT

Objective To study the effects of dexamethasone (DEX), recombinant bone morphogenetic protein-2 (rhBMP2), and combined application of rhBMP2 and DEX on alkaline phosphatase (ALP) activity of human dental pulp cells (HDPCs) in vitro. Methods HDPCs were cultured by tissue block method and identified. Effects of DEX, rhBMP2, and combined application of both on ALP activity of HDPCs were determined by a modified enzyme dynamical method. Results DEX could enhance ALP activity, reaching the peak value at the concentration of 0.01 nmol/ml. rhBMP2 could enhance ALP activity in a dose-dependent manner. ALP activity was significantly higher under the condition of combined application of DEX and rhBMP2 than single application of DEX or rhBMP2 only. Conclusion Both DEX and rhBMP2 can enhance ALP activity of HDPCs. However, combined application of DEX and rhBMP2 can greatly enhance ALP activity of HDPCs.

9.
Journal of Practical Stomatology ; (6)1995.
Article in Chinese | WPRIM | ID: wpr-670841

ABSTRACT

0.05).Combination of NGF with bFGFs(10 U/ml NGF+10 ?g/L bFGF or 5 U/ml NGF+5 ?g/L bFGF) not only promoted the proliferation of HDPCs(P

SELECTION OF CITATIONS
SEARCH DETAIL